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Abstract — In this paper we describe an algorithm for fault-tolerant sensor map-
ping for robotic vision. Basically, we use a certainty grid algorithm to map distance
measurements into a two-dimensional grid. The well-known certainty grid algorithm
can tolerate occasional transient sensor errors and crash failures, but will fail when
a sensor provides permanently faulty measurements.
Therefore we extended the certainty grid algorithm by a sensor validation method
that detects abnormal sensor measurements and adjusts a confidence value for each
sensor. This robust certainty grid approach works with at least three sensors with
an overlapping sensing range and needs fewer sensor inputs and less memory than
other approaches. Our method supports also reintegration of recovered sensors and
sensor maintenance by providing a measurement for the operability of a sensor.
We also present a case study with an autonomous mobile robot that features the robust
certainty grid algorithm in a time-triggered architecture.

1 Introduction
A mobile robot must be able to notice surrounding objects in order to be able to interact
with its environment. Sensors come in a great variety of types and each sensor is able to
contribute to the task of environmental perception.

However, given multiple sensory inputs, the task of modelling these data into a simple,
comprehensible image of the environment can be arduous when problems of temporal
accuracy [1], imprecise and faulty measurements, and sensor deprivation are considered.

This paper describes an algorithm for mapping sensor information to a unified view of
the environment based on the certainty grid approach. The first certainty grid method has
been developed at Carnegie-Mellon University in the 1980ies [2]. However, the certainty
grid suffers from faulty sensor measurements when they are not detected at the sensor
level.

It is the objective of this paper to propose an extension of the certainty grid algorithm
by a sensor validation method at the sensor integration level.

Comparing sensor measurements directly is difficult when their measurements are made
at different time instants. As a result we used an approval method for calculating confi-
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dence values for each sensor. Our algorithm is able to implicitly detect sensors with mal-
functions followed by a reduction of the sensor’s input contribution to the certainty grid.
Our approach supports inherently automatic integration of recovered sensors. Further-
more our approach facilitates sensor maintenance by assigning each sensor dynamically
a confidence value which can be a measure for the reliability of the sensor.

The robust certainty grid algorithm has been tested with simulated sensor faults. We
have also implemented a demonstrator with an autonomous mobile robot that features the
robust certainty grid algorithm.

The remainder of the paper is organized as follows: Section 2 gives an overview on
the original certainty grid algorithm. The following section discusses the influence of
sensor faults on the certainty grid. Section 4 describes the robust certainty grid algorithm.
Section 6 describes the functionality of our demonstrator. The paper is concluded in
Section 7.

2 Certainty Grid Algorithm
This section provides a brief overview of existing certainty grid algorithms.

A certainty or occupancy grid is a multidimensional (typically 2D or 3D) representa-
tion of the robot’s environment. The observed space is subdivided into cells, where each
cell stores information about the corresponding environment and an estimated probability
for the correctness of this information. Typically, a cell state can be “free”, if the place
appears to be void, or “occupied” if an object has been detected for that cell. Cells not
reached by sensors reflect an “uncertain” state. The cell state and the probabilistic esti-
mate of its correctness can be mapped into a single number reflecting the confidence of a
cell to be free.

Basically, it is assumed, that the application using the certainty grid has no a priori
knowledge of the geometry of its environment and the objects in this environment are
mostly static. The effect of occasional sensor errors can be neglected, because according
to [3], they will have little effect on the grid.

The calculation of new grid values is usually done by Bayesian inference. The English
clergyman Thomas Bayes stated in a paper (published after his death in the Philosophical
Transactions of the Royal Society of London [4]) the rule known today as Bayes’ theorem:

P (H|E) =
P (E|H)P (H)

P (E)
(1)

Bayes’ theorem quantifies the probability of hypothesis H, given that event E has oc-
curred. P (H) is the a priori probability of hypothesis H , P (H|E) states the a posteriori
probability of hypothesis H . P (E|H) is the probability that event E is observed given
that H is true. If multiple events have to be considered using Bayes’ rule, the order of
processing does not influence the result.

Hoover and Olsen present an application of a certainty grid where a set of video cameras
is used to detect free space in the vicinity of a robot [5]. They use the multiple views
from different angles to overcome the problem of occlusion and to increase performance,
however they do not discuss the subject of sensors delivering faulty measurements.

Sensor information usually is imperfect with respect to restricted temporal and spatial
coverage, limited precision, and possible sensor malfunctions or ambiguous measure-
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ments. To maximize the capabilities and performance it is often necessary to use a variety
of sensor devices that complement each other. Modelling such sensor measurements into
the grid is an estimation problem [6].

Matthies and Elfes [7] propose a uniform method for integration of various sensor types.
Each sensor is assigned a spatial interpretation model, developed for each kind of sensor,
that maps the sensor measurement into corresponding cells. When sensor uncertainties
are taken into account, we arrive at a probabilistic sensor model.

Figure 1 depicts the data flow of a certainty grid implementation with three sensors.
The sensor in the right position delivers faulty measurements which results in a deviation
of the certainty grid from the real object positions.
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3 Dealing With Sensor Faults
Martin and Moravec [3] concluded that the effects of occasional sensor faults on the grid
can be neglected.

Furthermore, if a sensor input has crash failure semantics, i. e., it provides either a
correct value or no value at all, the existing methods are sufficient to handle this situation
if each important grid cell is served by more than one sensor.

However, one problem of the certainty grid algorithm as found in the literature [2, 3,
6, 7] arrives when a sensor permanently provides faulty measurements. For example a
distance sensor could refuse to detect any object and always report “no object nearby”.
Such a fault would result in a significant deviation of the representation of the environment
in the grid from the actual environment.

There are two possible solutions to this problem:

Replicated sensors: Making the sensors fault-tolerant by replication results in costs for
extra sensors and voting nodes. For example each sensor could be extended to triple-
modular redundant sensors, the basic idea of such fault-tolerant units has already
been presented in [8]. However these extra sensors would not contribute to the grid
resolution or improve the update frequency. In applications where weight, power
consumption, and cost is an issue, this approach is not economical.

Replicated certainty grids: The generation of multiple grids and the application of stan-
dard fault-tolerant algorithms among these grids does not need extra sensors. Each
single certainty grid would represent a fault isolation area, e. g. supported by a single
sensor. The final view will then be generated by majority voting among the separate
grids. This approach, however, has the disadvantage of increased memory resource
requirements. A system with n sensors would need the (n + 1)-fold amount of
memory to represent the grids.

While the replicated sensors approach deals with the problems at sensor level, the sec-
ond approach takes effect at the grid level. Because of hardware and wiring costs we de-
cided for a grid level solution as described in the second approach. Since RAM memory
is a critical resource in embedded systems like a mobile robot we aimed at sophisticated
algorithm with low memory requirements, which is described in the following section.

4 Robust Certainty Grid Algorithm
We assume, that a sensor node may have a failure mode where it permanently submits
measurements with incorrect values. It is our goal to extend the existing certainty grid to
tolerate such sensor faults.

This goal will be achieved by analyzing the redundant parts of the certainty grid. Fur-
thermore, we assume that we have no a priori knowledge about the redundant and none-
redundant parts, thus we head for an automatic sensor validation.

It is difficult to validate sensors directly by comparing their inputs, because measure-
ments from different sensors for the certainty grid are often made from different angles
and at different time instants - a deviation in sensor measurements may be caused by a
sensor fault as well as by a change in the environment.
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Therefore, we use an approval method for maintaining a confidence measurement for
each sensor. The confidence value will be a measurement for the correctness of a sensor.
This confidence measurement conf may be a real value ranging from 0 to 1:

conf =


0 sensor appears to be wrong
...
1 sensor appears to be correct

If we have a priori knowledge about the sensor reliabilities, an initial confidence value
that reflects the respective reliability can be chosen at startup. If we have no knowledge
about the reliability of sensors the respective confidence values are initialized with 1.

As in the known certainty grid algorithms, each grid cell contains a probabilistic value
occ ranging from 0 to 1 corresponding to the believe, that this cell is occupied by an
object:

cell.occ =



0 free
...
0.5 uncertain
...
1 occupied

Additionally we store the main contributor (e. g., the sensor that updated this cell most
recently) of the occ value with the cell. This property of each cell will be named the
current owner of the cell:

cell.owner =


0 unknown
1 sensor 1
...
n sensor n

All grid cells are initialized with cell.occ = 0.5 and cell.owner = unknown.
When a new measurement has to be added to the grid, the following AddToGrid algo-

rithm is executed: (Fig. 2 lists the algorithm in pseudocode)
If the particular grid cell has no contributor listed in its owner field, the measurement

of the sensor is taken as is and the cell stores the index of the sensor as new owner.
If there was a contributor, the measurement is first compared to the cell value cell.occ.

A value named comparison is calculated that means a confirmation of old cell value and
new measurement, if the value is above a certain threshold, and means a contradiction of
old cell value and new measurement, if the value is below a certain different threshold. In
Figure 2 comparison is normalized to represent a value within [−1, +1].

In case of a confirmation, the confidence values of the new sensor and the owner are
both increased up to a maximal bound of confidence. In case of a contradiction, the
confidence values of the new sensor and the owner are both decreased down to a lower
bound of confidence. Since sensor faults are usually a rare event, we use a higher value
for the degradation of the confidence value than for the increase.

If comparison is not significant, it does neither yield a confirmation nor a contradiction.
The new occupancy value of the cell is calculated as a weighted average between old

value and measurement. The weights are derived from the respective confidence values
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procedure AddToGrid( sensor, cell )
begin

if (cell.owner = unknown) or (cell.owner = sensor) then
cell.occ := sensor.measurement;
cell.owner := sensor;

else
comparison := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
weight1 := abs(cell.occ-0.5)∗cell.owner.conf;
weight2 := abs(sensor.measurement-0.5)∗sensor.conf;
cell.occ := (cell.occ∗weight1+sensor.measurement∗weight2)

/ (weight1 + weight2);
if comparison > THRESHOLD then

inc(cell.owner.conf);
inc(sensor.conf);

if comparison < –THRESHOLD then
dec(cell.owner.conf);
dec(sensor.conf);

contribution := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
if contribution > THRESHOLD then

cell.owner := sensor;
else

cell.owner := unknown;
end

Figure 2: Pseudocode of the AddToGrid algorithm

and the significance of the measurement. A measurement is more significant if it has a
greater absolute distance to the uncertain state (0.5).

Thereafter, a new owner has to be selected. Therefore, a value contribution is derived.
contribution is calculated the same way as the comparison value, but it uses the new
cell.occ value.

The contribution is a measurement of the consistency of the sensor measurement with
the new cell.occ value. If the contribution is above a certain threshold, the contributing
sensor becomes the new owner of the cell. Otherwise the cell.owner value will be reset
to unknown.

Table 1 gives examples for updating grid cell values by sensor measurements. The value
for THRESHOLD had been chosen with 0.5. In the first case, the sensor measurement
and the grid cell value confirm each other. The result is an increased confidence for the
sensor that originally contributed to this cell (the owner) and the sensor that produced the
new measurement. In this example the sensor becomes also the new owner of the entry.
In the second case, the sensor’s measurement does contradict the grid value – the sensor
reports free space while the grid cell value is sure about an object. Thus, the confidences
of the involved sensors are decreased. Case 3 shows a less severe contradiction, because
the grid cell is not quite certain about its content. Hence mainly the new measurement
influences the updated grid value. Case 4 shows again a measurement that confirms the
grid value and leads to a rise of the sensors’ confidences. Thus, the sensors’ confidence
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0.8 1 1 1 0.6 0.925 increased 0.85 sensori

0.925 1 0 1 −0.85 0.425 decreased 0.15 unknown
0.425 1 1 0.8 −0.15 0.909 unchanged 0.818 sensori

0.909 0.8 1 0.8 0.818 0.959 increased 0.918 sensori

Table 1: Examples for grid cell updates

values are dynamically updated according to the comparison of their measurements to the
grid. A bad performing sensor will subsequently loose confidence and eventually drop out
of the set of contributing sensors. However if the sensor recovers, it will gain confidence
again by repeated confirming measurements.

The approach works with at least three sensors whereof one sensor might be faulty at
one time. In comparison to the node level approach discussed in Section 3, the proposed
method gains extra sensor space, because the sensor views must overlap only partially.
There must be at least one grid cell, which is served by all three sensors.

The extra amount of memory for the grid representation is the storage for the owner
values, thus

dlog2(nsensors + 1)e
8

· gridheight · gridwidth, (2)

more bytes of memory, where nsensors is the number of sensor contributing to the grid.
The memory requirements for the confidence values can usually be neglected, if the num-
ber of sensors is remarkably lower than the total number of cells in the grid. Thus, the
memory requirements of the robust certainty grid algorithm are considerable less than the
memory consumption of the fault-tolerant approach at grid level discussed in Section 3

In contrast to Bayes’ formula, the AddToGrid procedure is not commutative. Thus,
when a grid cell is updated by subsequent measurements, the order of updates makes a
difference in the result. This can be explained because we change the a priori probabil-
ities for the sensors with each update. We overcome the disadvantage of sensitivity to
message ordering by applying a time-triggered schedule. By avoiding race conditions,
time-triggered communication and computation ensures a predictable order of message
tasks.
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5 Recovery of Sensor Confidence
According to [9, 10], the probability of transient faults is much higher than the probability
of permanent faults. The robust certainty grid algorithm cares for a decrease of the con-
fidence value for a failing sensor. However, as soon as the failure has passed the sensor’s
confidence rises again due to subsequent positive comparisons. This self-healing behavior
is related to the concept of self-stabilization as introduced by Dijkstra in [11].
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Figure 3: Recovery of sensor confidence after a transient failure

Figure 3 depicts the confidence values of a set of three sensors from a simulation of
about 200 sensor readings using the robust certainty grid algorithm. All sensors had
been initialized with the highest confidence, but sensor 1 suffered from a transient failure
during its first 50 readings. The simulated failure added a noise signal of 20% of the
sensor’s range to the output signal. While that failure persisted, the confidence of sensor
1 decreased. The confidence values of sensor 2 and 3 were also fluctuating due to incon-
sistencies in their readings and contradictions with sensor 1. As shown in the figure, the
confidence value of sensor 1 recovered within about 30 sensor readings after removal of
the transient failure.

6 Case Study
We implemented the robust certainty grid in a mobile robot for demonstration purposes.
The mobile robot comprises a model car (“smart car”) equipped with a suit of pivoted
distance sensors, two ultrasonic sensors pointing straight forward, an electric drive, and a
steering unit (see Figure 4).

In [12] we showed that time-triggered communication networks are apt to implement
real-time sensor fusing applications. Therefore, we used a time-triggered sensor fusion
model [13] where all communication instants and computation tasks are a priori planned
in a time-triggered schedule.

We used a TTP/A network to interconnect distance sensors, servo motors for sensor
pivoting, driving, and steering units. Each unit is a separate TTP/A node implemented on
a low-cost microcontroller and equipped with a smart transducer interface [14].

The network also contains a master node and a data processing node. The distance
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Figure 4: Smart Car: Autonomous mobile robot with pivoting sensors

sensors are swivelled around by servo motors enabling them to scan the area in front of
the robot. The sensors generate a value that corresponds to the distance of the object they
are aimed at.

The data stream provided by the distance sensors is taken over by the data processing
node that fuses the perceptions from the distance sensors with a model of the robot’s
environment, using the robust certainty algorithm described in the previous section. Thus,
the shapes of obstacles are stored and assigned with a probability value. We added a
function that moves all values up to the uncertain state with the progression of time. So,
an object has to be re-scanned periodically.

We used 8-bit values to express the probability values between 0 and 1. Thus 0x00
corresponds to the free state, 0x80 means the uncertain state while 0xFF is used to
express the occupied state of a grid cell. Fig. 5 depicts an example of a grid allocation.

Movement decisions about direction and speed are made based on a vector field his-
togram derived from the certainty grid [15]. The vector field histogram is a method to

(a) Obstacle in front of car
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Figure 5: Fusion of measurements into the certainty grid
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Figure 6: Dividing the certainty grid into polar sectors.

determine the direction with the lowest obstacle density. The algorithm uses the grid
representation of the environment which is provided at the cluster level.

The vector field histogram approach divides the certainty grid into disjoint polar sectors
Sk (see Figure 6).

For each cell Cij in a given sector an obstacle vector mij is calculated. The magnitude
of mij depends on the certainty value occij of the cell and also on the distance dij between
the vehicle and the respective cell:

mij = (occij)
2(a − b · dij) (3)

with a − b · dmax = 0. a and b are positive constants that define the sensitivity of the
algorithm to the object distance. dmax is the distance between the farthest cell and the
vehicle.

Hence, the sum over all obstacle vectors mij in sector Sk forms an obstacle density
entity hk:

hk =
∑

Cij∈Sk

mij, k = 1, . . . , n. (4)

At this point the entities h1, h2, . . . , hn are used to form a histogram (see Figure 7),
which can be used for obstacle avoidance.

High magnitudes in the histogram indicates regions with high obstacle density, while
areas with low magnitudes indicate regions with low obstacle density. By applying a
threshold to the histogram it is possible to localize regions with low obstacle density,
which can be used for obstacle avoidance. The car will then be moved towards the most
promising direction. Moving or turning of the car affords a correction of the grid values.
Since the grid contains only 17 × 11 values the shift and rotate operations can be applied
to the grid in real-time.
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Figure 7: Histogram of the obstacle density.

The smart car is able to move autonomously through its environment. Additionally,
it has an interface to a service point for monitoring and configuration access. Via this
monitoring interface it is possible to watch snapshots of the certainty grid or the sensor
confidence values. The non time-critical service communication is routed concurrently to
the real-time system that receives the sensor values and maintains the grid and confidence
values. It is possible to route the service access over different networks, e. g. over a
wireless link and CORBA to a service station somewhere connected to the internet.

7 Conclusion
The class of certainty grid algorithms are qualified for mapping sensor information of
mobile robots into a concise description of the environment.

The previously published certainty grid algorithms can tolerate occasional transient sen-
sor errors and crash failures but will fail for permanent sensor faults.

We developed a method for sensor validation that detects abnormal sensor measure-
ments and adjusts a weight value of the corresponding sensor. Recovered sensors are
reintegrated automatically. This robust certainty grid approach supports also sensor main-
tenance, because it provides a measurement for the operability of a sensor.

The robust certainty grid will be implemented in a mobile autonomous robot with a
time-triggered communication architecture.
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